Evolution Runs Faster on Short Timescales

2559447601_005b33ae7d_b

BQO ROUNDUP

Flickr MIKI Yoshihito (CC)

In the 1950s, the Finnish biologist Björn Kurtén noticed something unusual in the fossilized horses he was studying. When he compared the shapes of the bones of species separated by only a few generations, he could detect lots of small but significant changes. Horse species separated by millions of years, however, showed far fewer differences in their morphology. Subsequent studies over the next half century found similar effects — organisms appeared to evolve more quickly when biologists tracked them over shorter timescales.

Then, in the mid-2000s, Simon Ho, an evolutionary biologist at the University of Sydney, encountered a similar phenomenon in the genomes he was analyzing. When he calculated how quickly DNA mutations accumulated in birds and primates over just a few thousand years, Ho found the genomes chock-full of small mutations. This indicated a briskly ticking evolutionary clock. But when he zoomed out and compared DNA sequences separated by millions of years, he found something very different. The evolutionary clock had slowed to a crawl.

Baffled by his results, Ho set to work trying to figure out what was going on. He stumbled upon Kurtén’s 1959 work and realized that the differences in rates of physical change Kurtén saw also appeared in genetic sequences.

One Response

  1. Roger Tarbutton says:

    Rather than occurring as a result of infection of a common ancestor, why couldn’t the existence of virus genetic material be a result of independent infection of separate species?

Leave a Reply